Introduction Aims

Shallow landslides related to rainfall-triggered translational or rotational failure of saturated slopes are In this study, we propose an approach for incorporating landslide release and propagation into a catchment-scale modelling campaign.

very common in Colombia (Aristizabal, 2013). They can evolve into debris flows (lverson et al., 1997;

Mergili et al., 2012). Various studies have been carried out on slope stability or landslide runout. Few Study area

studies, however, consider a combination of both aspects. The possible consequences of shallow The study catchment known as La Arenosa (9.9 km?) is located in the central area of the Colombian Andes (San Carlos — Antioquia). On
landslides represent an important aspect in land use planning programs in mountainous areas (Crosta & September 21, 1990, approx. 200 mm of precipitation fell within the study area in less than 3 hours, triggering approx. 700 landslides many of
Frattini, 2003). In Colombia, the inclusion of a landslide hazard map in land use planning is mandatory. which have converted into hillslope debris flows (Velasquez & Mejia, 1991).

Models

(i) r.slope.stability for slope stability assessment, using a limit equilibrium model together with a probabilistic analysis applied to a range of geotechnical parameters

o . . Factor of conservativeness (FoC
(cohesion, internal friction) and surface; (ii) r.avaflow for landslide propagation, using a Voellmy-type model. The landslide inventory and the zones categorized as high vativ (FoC)

probability of failure (Pf), determined through r.slope.stability by Palacio et al. (2020), are applied as the source areas for propagation modelling with r.avaflow. foC—= [P+EP [0,00] Optimum 1.0
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